ASSURING
AUTONOMY

INTERNATIONAL PROGRAMME

2.3.2 Sufficiency of the learning process
Practical guidance - cross-domain

Authors: Rob Ashmore (Dstl), and Dr Radu Calinescu and Dr Colin Paterson (Assuring
Autonomy International Programme)

The Model Learning stage of the ML lifecycle is concerned with creating a model, or
algorithm, from the data presented to it. A good model will replicate the desired
relationship between inputs and outputs present in the training set, and will satisfy both the
defined safety requirements as well as non-functional requirements such as providing an
output within a given time and using an acceptable amount of computational resources.

Stage Input and Output Artefacts

The key input artefact to this stage is the training data set produced by the Data
Management stage. The key output artefacts are a machine-learnt model for verification in
the next stage of the ML lifecycle and a performance deficit report used to inform remedial
data management activities.

Activities

1. Model Selection - This activity decides the type and, where applicable, the variant
and the structure of the model to be produced in the Model Learning stage.
Numerous types of ML models are available [1, 2], including multiple types of
classification models (which identify the category that the input belongs to),
regression models (which predict a continuous-valued attribute), clustering models
(which group similar items into sets), and reinforcement learning models (which
provide an optimal set of actions, i.e. a policy, for solving, for instance, a navigation
or planning problem).

2. Training - This activity optimises the performance of the ML model with respect to
an objective function that reflects the requirements for the model. To this end, a
subset of the training data is used to find internal model parameters (e.g. the
weights of a neural network, or the coefficients of a polynomial) that minimise an
error metric for the given data set. The remaining data (i.e, the validation set) are
then used to assess the ability of the model to generalise. These two steps are
typically iterated many times, with the training hyperparameters tuned between
iterations so as to further improve the performance of the model. For each iteration
data may be moved between the training and validation data sets.

3. Hyperparameter Selection - This activity is concerned with selecting the parameters
associated with the training activity, i.e. the hyperparameters. Hyperparameters
control the effectiveness of the training process, and ultimately the performance of
the resulting model [3]. They are so critical to the success of the ML model that they
are often deemed confidential for models used in proprietary systems [4]. There is
no clear consensus on how the hyperparameters should be tuned [5]. Typical
options include: initialisation with values offered by ML frameworks; manual
configuration based on recommendations from literature or experience; or trial and



error [3]. Alternatively, the tuning of the hyperparameters can itself be seen as a
machine learning task [6, 7].

4. Transfer Learning - The training of complex models may require weeks of
computation on many GPUs [8]. As such, there are clear benefits in reusing ML
models across multiple domains. Even when a model cannot be transferred between
domains directly, one model may provide a starting point for training a second
model, significantly reducing the training time. The activity concerned with reusing
models in this way is termed transfer learning [9].

Desired Assurance Properties

From an assurance viewpoint, the models generated by the Model Learning stage should
exhibit the key properties described below:

1. Performant—This property considers quantitative performance metrics applied to
the model when deployed within a system. These metrics include traditional ML
metrics such as classification accuracy, ROC and mean squared error, as well as
metrics that consider the system and environment into which the models are
deployed.

2. Robust -This property considers the model’s ability to perform well in circumstances
where the inputs encountered at run time are different to those present in the
training data. Robustness may be considered with respect to environmental
uncertainty, e.g. flooded roads, and system-level variability, e.g. sensor failure.

3. Reusable - This property considers the ability of a model, or of components of a
model, to be reused in systems for which they were not originally intended. For
example, a neural network trained for facial recognition in an authentication system
may have features which can be reused to identify operator fatigue.

4. Interpretable - This property considers the extent to which the model can produce
artefacts that support the analysis of its output, and thus of any decisions based on
it. For example, a decision tree may support the production of a narrative explaining
the decision to hand over control to a human operator.

Methods

Table 1 provides a summary of the methods that can be applied during each Model Learning
activity in order to achieve the desired assurance properties (desiderata). Further details on
the methods listed in Table 1 are available in [10].
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Associated activities’ Supported desiderata’

Model Training Hyperparam. Transfer Performant Robust Reusable Interpretable

Method Selection Selection Learning

Use appropriate performance Y, v * *

measures [11, 12]

Statistical tests [13,14] v v *

Ensemble Learning [15] v v v * *

(T;;f.;tll‘ﬂISE hyperparameters [16, P v o &

Batch Normalization [18] v v * *

Prefer simpler models [19, 20] v / = *

Augment training data v * *

Regularization methods [21] v v *

Use early stopping v v *

Use models that intrinsically o » &

support reuse [22]

Transfer Learning [23] v v v * o
Use model zoos [21] v Y v *

Post-hoc interpretability v *
methods [24, 25, 26]

"W = activity that the method is typically used in; /= activity that may use the method

*¥% = desideratum supported by the method; % = desideratum partly supported by the method

Table 1 — Assurance methods for the Model Learning stage

Summary of Approach

1. Take the training data set produced by the Data Management stage (guidance on
data management is provided in section 2.3.1)

2. Apply appropriate methods in order to undertake each activity of the model learning
process to ensure a machine-learnt model is generated that achieves the desired
assurance properties.

a. Apply appropriate methods for model selection

b. Apply appropriate methods for training

c. Apply appropriate methods for hyperparameter selection
d. Apply appropriate methods for transfer learning

3. Provide a machine-learnt model for verification (guidance on model verification is
provided in section 2.3.3) and a performance deficit report to inform remedial data
management activities.
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